Short Communication

The interaction of ClO₂SO₃F with AsF₅ and SbF₅

P. A. YEATS AND F. AUBKE*

Department of Chemistry, The University of British Columbia, Vancouver 8, B.C. (Canada) (Received August 31, 1973)

The chemical literature abounds in examples where a fluoride-ion donor and a suitable fluoride acceptor interact with fluoride-ion transfer, according to:

 $AF + BF_n \to A^+ [BF_{n+1}]^- \tag{1}$

with AF the donor and BF_n the acceptor.

In particular, the pentafluorides AsF_5 and SbF_5 have proven to be excellent fluoride-ion acceptors and the hexafluoro anions AsF_6^- and SbF_6^- or polyanions of the type $SbF_6^- (SbF_5)_n$, with *n* commonly 1 or 2, are readily formed. A large number of "heterocation"¹ complexes have been synthesized by this route.

We became interested in extending this method by attempting the transfer of fluorosulfate ion to these two acceptors. Chlorylfluorosulfate^{2a, b}, ClO₂SO₃F, was thought to be a suitable donor for the following reasons: (a) ClO₂SO₃F is easily synthesized³ and is a supercooled liquid at room temperature; (b) the chloronium cation, ClO₂⁺, with AsF₆⁻ or SbF₆⁻, for example, as counterion, is well characterized by vibrational spectroscopy⁴⁺⁶; and (c) ClO₂SO₃F has been found recently to be a very suitable SO₃F⁻ donor reacting with tin(IV) tetrakis-(fluorosulfate), Sn(SO₃F)₄, which acts as an acceptor to yield [ClO₂]₂[Sn(SO₃F)₆]⁷.

Of the expected mixed anion, the two, $[SbF_5(SO_3F)]^-$ and $[Sb_2F_{10}(SO_3F)]^-$, have been identified previously⁸ by their ¹⁹F NMR spectra only. They are formed by dissolving SbF₅ in fluorosulfuric acid. AsF₅ was found to be a far weaker acid than SbF₅ and evidence for the presence of $[AsF_5(SO_3F)]^-$ rests chiefly on conductivity measurements^{8b}, indicating AsF₅ to be only a very weak acid in HSO₃F. We were interested in a characterization of these and other possible anions by their vibrational spectra.

Experimental

General

 AsF_5 and SbF_5 (both from Ozark-Mahoning Company) were purified by repeated distillation, either in a Monel vacuum system (AsF_5) or in a Pyrex apparatus at atmospheric pressure (SbF_5). Chlorylfluorosulfate was obtained by

^{*} To whom correspondence should be directed.

condensing a 3–5-fold excess of peroxydisulfuryl difluoride, $S_2O_6F_2$, on to ClO_2 in a Pyrex flask fitted with a Teflon stem stopcock. The mixture reacted while being warmed up from -78 °C to room temperature overnight. Both starting materials, ClO_2^9 and $S_2O_6F_2^{10}$, were prepared by literature methods.

Vibrational spectra were obtained on a Cary 81 Raman spectrophotometer equipped with a Spectra Physics Model 125 He–Ne laser and on a Perkin–Elmer 457 grating infrared spectrophotometer. For the IR samples, AgCl, AgBr and KRS-5 (all from Harshaw Chemicals) windows were employed. Moisture-sensitive materials were handled in an inert-atmosphere box and stored under dry nitrogen.

Reaction of ClO₂SO₃F with AsF₅

In a typical preparation, 345 mg (2.08 mmol) of ClO_2SO_3F was reacted with an excess of AsF₅ at a pressure of *ca*. 300 mmHg in a Pyrex flask fitted with a Teflon stem stopcock and attached to the vacuum line. With the reactor at room temperature, a yellow liquid was formed over a period of 4 h. After removal of all excess AsF₅ and cooling, a yellow solid (m.p. +38 °C) was obtained. Chemical analysis (performed by A. Bernhardt, Elbach, West Germany) together with the weight of product obtained established the composition ClO_2SO_3F •AsF₅. Analysis: Found: Cl, 10.40; F, 34.10; S, 9.67%. ClO_2SO_3F •AsF₅ (1:1 complex) requires Cl, 10.54; F, 33.89; S, 9.53%.

Reaction of ClO_2SO_3F with SbF_5

When a 3-5-fold excess of SbF₅ was added to 1021 mg (6.14 mmol) of ClO₂SO₃F at room temperature in a similar Pyrex reactor to that described above, a yellowish-white solid was formed immediately in addition to a colourless, moderately volatile liquid. After all volatiles were removed *in vacuo*, 3190 mg of a white solid melting at 58 °C was left behind. Qualitative and infrared analysis indicated the complete absence of fluorosulfate while quantitative analysis indicated the presence of ClO₂Sb₂F₁₁. Analysis: Found: Sb, 46.51; F, 40.26%. ClO₂Sb₂F₁₁ requires Sb, 46.74; F, 40.31%. The infrared spectrum of the volatile material, run as liquid between two window plates, indicated the presence of SbF₄(SO₃F)¹¹ together with SbF₅.

Vibrational spectra

The observed Raman frequencies for ClO_2SO_3F -AsF₅ are listed in Table 1 together with a tentative assignment. In good agreement with previous reports ^{4-7, 12} and aided by the observation of ³⁵Cl and ³⁷Cl isotope splittings, the presence of the ClO_2^+ cation may be clearly identified by bands at 1300, 1060 and 524 cm⁻¹.

The assignment of the remaining bands is aided by previous assignments for SO₃F groups in anionic complexes such as $[Sn(SO_3F)_6]^{2-7}$ or $[Br(SO_3F)_4]^{-13}$ and the square-pyramidal molecules BrF₅ and IF₅¹⁴. Again good agreement is found, except for the region of *ca*. 550–650 cm⁻¹ where ambiguities arise because of the presence of SO_3 deformation and As-F stretching modes. No assignment has been attempted in the very low frequency region.

$\Delta v/cm^{-1}$	Int.	Approximate description	$\Delta v/cm^{-1}$	Int.	Approximate description
1359	s	asym. SO ₂ stretch	559	m	SO ₂ rocking
1307	m	$\left. \right\}$ asym. ClO ₂ ⁺ stretch, ν_3	524	s	ClO_2^+ bend, v_3
1291	mw		451	m,sh	S-F wagging
1205	vs	sym. SO ₂ stretch	448	w	S-O*As wagging
1057 1060	s w,sh	$\left. \right\}$ sym. ClO ₂ ⁺ stretch, v_1	429	m	SO ₂ F torsion
1034	m	S-O*As stretch	382 366	m m,sh	As-F bending
856	w	S-F stretch	353	s })
849	m		315	m	
700	S	$v(AsF_{ax})$	298	m,sh	
668 641	vs mw	v(AsFeq) v(AFeq) in phase	272	w	
602	m,sh	v(AsF) out of phase			
596	m	$v(AsO)$ or $S\delta SO_2$			

TABLE 1

RAMAN SPECTRUM OF $ClO_2[AsF_5(SO_3F)]$

Abbreviations; vs = very strong, s = strong, m = medium, w = weak, vw = very weak, sh = shoulder, ax = axial, eq = equatorial, δ = deformation, O* = bridging oxygen.

From the above mentioned comparisons, it seems reasonable to regard the reaction product as $ClO_2[AsF_5(SO_3F)]$, implying that SO_3F^- abstraction has indeed taken place.

The infrared and Raman data for the SbF₅ derivative are consistent with the formulation ClO₂[Sb₂F₁₁]. Vibrational frequencies for the chloronium cation are found at *ca*. 1310, 1050 and 514 cm⁻¹ again in excellent agreement with previous work ⁴⁻⁷. The remaining bands may be assigned to the polyanion Sb₂F₁₁⁻, again using previous work as a basis for comparison ^{15, 16}.

Discussion

Whereas AsF₅ acts as a fluorosulfate-ion acceptor according to

$$ClO_2SO_3F + AsF_5 \rightarrow ClO_2[AsF_5(SO_3F)]$$
⁽²⁾

the interaction of SbF₅ and ClO₂SO₃F appears to be more complex, *i.e.*

$$ClO_2SO_3F + 3SbF_5 \rightarrow ClO_2[Sb_2F_{11}] + SbF_4(SO_3F)$$
(3)

and requires an excess of antimony(V) fluoride. All attempts to obtain a possible complex of composition $ClO_2[SbF_5(SO_3F)]$ by using excess chlorylfluorosulfate resulted in the formation of complex reaction mixtures.

Very little can be said at this point regarding a detailed mechanism for reaction (3); however, the conversion of a SO_3F compound into a $Sb_2F_{11}^-$ salt may be extended to other fluorosulfates. Work in this direction is at present under way.

It is interesting to note that even though the reaction of chlorylfluoride, FClO₂, and SbF₅ has been extensively studied in the past^{2a, b, 6, 17}, only ClO₂SbF₆ and (very recently) ClO₂Sb₃F₁₆⁶ have been reported.

There appears to be no definite precedent for the ion $[AsF_5(SO_3F)]^-$. The chloronium compound shows limited thermal stability and decomposition occurs with gradual loss of AsF₅. It is interesting in this context that our attempts to obtain an analogous $[BF_3(SO_3F)]^-$ compound resulted in an incomplete uptake of BF₃ by ClO₂SO₃F at temperatures between 0 °C and 5 °C. All BF₃ could be readily removed *in vacuo*. This result was not unexpected when the low thermal stability of ClO₂BF₄^{2a, b 4, 6} is taken into consideration.

In all cases AsF_5 appeared to be a most suitable anion for abstracting the SO_3F^- ion without subsequent side-reactions and this reaction should be capable of extension to other suitable SO_3F^- donors.

Financial support by the Defence Research Board of Canada is gratefully acknowledged.

REFERENCES

- 1 A. A. WOOLF, Adv. Inorg. Chem. Radiochem., 9 (1966) 217.
- 2 (a) M. SCHMEISSER AND F. L. EBENHÖCH, Angew. Chem., 66 (1954) 230. (b) A. A. WOOLF, J. Chem. Soc., (1954) 4113.
- 3 H. A. CARTER, A. M. QURESHI AND F. AUBKE, Chem. Commun., (1968) 1461.
- 4 K. O. CHRISTE, C. J. SCHACK, D. PILLIPOVICH AND W. SAWODNY, Inorg. Chem., 8 (1969) 2489.
- 5 H. A. CARTER, W. M. JOHNSON AND F. AUBKE, Can. J. Chem., 47 (1969) 4619; H. A. CARTER AND F. AUBKE, *ibid.*, 48 (1970) 3456.
- 6 A. I. KARELIN, Z. K. NIKITINA, YU. YA. KHARITONOV AND V. YA. ROSOLOVSKII, Russ. J. Inorg. Chem., 15 (1970) 480.
- 7 P. A. YEATS, J. R. SAMS AND F. AUBKE, Inorg. Chem., 12 (1973) 328.
- 8 (a) R. C. THOMPSON, J. BARR, R. J. GILLESPIE, J. B. MILNE AND R. A. ROTHENBURY, *Inorg. Chem.*, 4 (1965) 1641.

(b) R. J. GILLESPIE, K. OUCHI AND G. P. PEZ, Inorg. Chem., 8 (1969) 63.

- 9 G. BRAUER (Ed.), Handbook of Preparative Inorganic Chemistry, Academic Press, New York, 2nd ed., 1963, p. 301.
- 10 G. H. CADY AND J. M. SHREEVE, Inorg. Synth., 7 (1963) 124.
- 11 R. J. GILLESPIE AND R. A. ROTHENBURY, Can. J. Chem., 42 (1964) 416.
- 12 H. A. CARTER, A. M. QURESHI, J. R. SAMS AND F. AUBKE, Can. J. Chem., 48 (1970) 2853.
- 13 H. A. CARTER, S. P. L. JONES AND F. AUBKE, Inorg. Chem., 9 (1970) 2485.
- 14 G. M. BEGUN, W. H. FLETCHER AND D. F. SMITH, J. Chem. Phys., 42 (1965) 2236.
- 15 J. WEIDLEIN AND K. DEHNICKE, Z. Anorg. Allg. Chem., 348 (1966) 278.
- 16 F. O. SLADKY, P. A. BULLINER AND N. BARTLETT, J. Chem. Soc. (A), (1969) 2179.
- 17 M. SCHMEISSER AND W. FINK, Angew. Chem., 69 (1957) 780.