Short Communication

The interaction of $CIO₂SO₃F$ with AsF₅ and SbF₅

P. A. YEATS AND F. AUBKE*

Department of Chemistry, The University of British Columbia, Vancouver 8, B.C. (Canada) (Received August 31, 1973)

The chemical literature abounds in examples where a fluoride-ion donor and a suitable fluoride acceptor interact with fluoride-ion transfer, according to:

 $AF + BF_n \rightarrow A+ [BF_{n+1}]$ (1)

with AF the donor and BF_n the acceptor.

In particular, the pentafluorides AsF_5 and SbF_5 have proven to be excellent fluoride-ion acceptors and the hexafluoro anions AsF_6^- and SbF_6^- or polyanions of the type SbF_6 ^{-•}(SbF_5)_n, with *n* commonly 1 or 2, are readily formed. A large number of "heterocation"¹ complexes have been synthesized by this route.

We became interested in extending this method by attempting the transfer of fluorosulfate ion to these two acceptors. Chlorylfluorosulfate^{2a, b}, ClO₂SO₃F, was thought to be a suitable donor for the following reasons: (a) $ClO₂SO₃F$ is easily synthesized³ and is a supercooled liquid at room temperature; (b) the chloronium cation, ClO_2 ⁺, with AsF₆⁻ or SbF₆⁻, for example, as counterion, is well characterized by vibrational spectroscopy⁴⁻⁶; and (c) $ClO₂SO₃F$ has been found recently to be a very suitable SO_3F^- donor reacting with tin(IV) tetrakis-(fluorosulfate), $Sn(SO_3F)_4$, which acts as an acceptor to yield $[ClO_2]_2[Sn(SO_3F)_6]^7$.

Of the expected mixed anion, the two, $[SbF_3(SO_3F)]$ ⁻ and $[Sb_2F_{10}(SO_3F)]$ ⁻, have been identified previously⁸ by their ¹⁹F NMR spectra only. They are formed by dissolving SbF₅ in fluorosulfuric acid. AsF₅ was found to be a far weaker acid than SbF₅ and evidence for the presence of $[AsF₅(SO₃F)]$ ⁻ rests chiefly on conductivity measurements^{8b}, indicating AsF_s to be only a very weak acid in HSO₃F. We were interested in a characterization of these and other possible anions by their vibrational spectra.

Experin?ental

General

 $AsF₅$ and $SbF₅$ (both from Ozark-Mahoning Company) were purified by repeated distillation, either in a Monel vacuum system $(AsF₅)$ or in a Pyrex apparatus at atmospheric pressure ($SbF₅$). Chlorylfluorosulfate was obtained by

_

^{*} To whom correspondence should be directed.

condensing a 3-5-fold excess of peroxydisulfuryl difluoride, $S_2O_6F_2$, on to ClO₂ in a Pyrex flask fitted with a Teflon stem stopcock. The mixture reacted while being warmed up from -78 °C to room temperature overnight. Both starting materials, ClO₂⁹ and S₂O₆F₂¹⁰, were prepared by literature methods.

Vibrational spectra were obtained on a Cary 81 Raman spectrophotometer equipped with a Spectra Physics Model 125 He-Ne laser and on a Perkin-Elmer 457 grating infrared spectrophotometer. For the IR samples, AgCl, AgBr and KRS-5 (all from Harshaw Chemicals) windows were employed. Moisture-sensitive materials were handled in an inert-atmosphere box and stored under dry nitrogen.

Reaction of C102S03F with AsFS

In a typical preparation, 345 mg (2.08 mmol) of $ClO₂SO₃F$ was reacted with an excess of AsF, at a pressure of *ca. 300* mmHg in a Pyrex flask fitted with a Teflon stem stopcock and attached to the vacuum line. With the reactor at room temperature, a yellow liquid was formed over a period of 4 h. After removal of all excess AsF₅ and cooling, a yellow solid (m.p. $+38$ °C) was obtained. Chemical analysis (performed by A. Bernhardt, Elbach, West Germany) together with the weight of product obtained established the composition $CIO_2SO_3F\bullet ASF_5$. Analysis: Found: Cl, 10.40; F, 34.10; S, 9.67%. CIO₂SO₃F•AsF₅ (1:1 complex) requires Cl, 10.54; F, 33.89; S, 9.53% .

Reaction of C102S0,F with SbFs

When a 3-5-fold excess of $SbF₅$ was added to 1021 mg (6.14 mmol) of $C1O_2SO_3F$ at room temperature in a similar Pyrex reactor to that described above, a yellowish-white solid was formed immediately in addition to a colourless, moderately volatile liquid. After all volatiles were removed *in vacua,* 3190 mg of a white solid melting at 58 "C was left behind. Qualitative and infrared analysis indicated the complete absence of fluorosulfate while quantitative analysis indicated the presence of $CIO_2Sb_2F_{11}$. Analysis: Found: Sb, 46.51; F, 40.26%. $CIO_2Sb_2F_{11}$ requires Sb, 46.74; F, 40.31%. The infrared spectrum of the volatile material, run as liquid between two window plates, indicated the presence of $SbF_4(SO_3F)^{11}$ together with SbF,.

Vibrational spectra

The observed Raman frequencies for $CIO_2SO_3F\bullet AsF_5$ are listed in Table 1 together with a tentative assignment. In good agreement with previous reports $4-7$, 12 and aided by the observation of $35C1$ and $37C1$ isotope splittings, the presence of the $ClO₂$ ⁺ cation may be clearly identified by bands at 1300, 1060 and 524 cm⁻¹.

The assignment of the remaining bands is aided by previous assignments for SO_3F groups in anionic complexes such as $[Sn(SO_3F)_6]^{2-7}$ or $[Br(SO_3F)_4]^{-13}$ and the square-pyramidal molecules BrF_5 and IF_5 ¹⁴. Again good agreement is found, except for the region of *ca. 550-650* cm-l where ambiguities arise because of the presence of SO_3 deformation and As–F stretching modes. No assignment has been attempted in the very low frequency region.

$\Delta v / \text{cm}^{-1}$	Int.	Approximate description	$\Delta v/cm^{-1}$	Int.	Approximate description
1359	s	asym. $SO2$ stretch	559	m	$SO2$ rocking
1307	m	asym. ClO_2 ⁺ stretch, v_3	524	s	$ClO2+$ bend, v_3
1291	mw		451	m,sh	S-F wagging
1205	VS.	sym. SO ₂ stretch	448	W	$S-O^*As$ wagging
1057 1060	s. w.sh	sym. ClO_2 ⁺ stretch, v_1	429	m	$SO2F$ torsion
1034	m	S-O*As stretch	382 366	m m,sh	As-F bending
856	w	$S-F$ stretch	353	s	
849	m		315	m	
700	s	$v(AsF_{ax})$	298	m,sh	
668 641	vs mw	$\nu(AsF_{ea})$ $v(AF_{eq})$ in phase	272	W	
602	m,sh	$v(AsF)$ out of phase			
596	m	$v(AsO)$ or $S\delta SO_2$			

TABLE 1 **RAMAN SPECTRUM OF CIO₂[AsF₅(SO₃F)]**

Abbreviations; $vs = very$ strong, $s = strong$, $m = medium$, $w = weak$, $vw = very$ weak, sh = shoulder, $ax = axial$, eq = equatorial, δ = deformation, O^* = bridging oxygen.

From the above mentioned comparisons, it seems reasonable to regard the reaction product as $ClO₂[AsF₅(SO₃F)]$, implying that $SO₃F⁻$ abstraction has indeed taken place.

The infrared and Raman data for the SbF_5 derivative are consistent with the formulation $ClO₂[Sb₂F₁₁]$. Vibrational frequencies for the chloronium cation are found at ca. 1310, 1050 and 514 cm⁻¹ again in excellent agreement with previous work⁴⁻⁷. The remaining bands may be assigned to the polyanion Sb_2F_{11} , again using previous work as a basis for comparison $15, 16$.

Discussion

Whereas $AsF₅$ acts as a fluorosulfate-ion acceptor according to

$$
ClO2SO3F + AsF5 \rightarrow ClO2[AsF5(SO3F)]
$$
\n(2)

the interaction of SbF_5 and ClO_2SO_3F appears to be more complex, *i.e.*

$$
ClO2SO3F + 3SbF5 \rightarrow ClO2[Sb2F11] + SbF4(SO3F)
$$
\n(3)

and requires an excess of antimony(V) fluoride. All attempts to obtain a possible complex of composition $CIO_2[SbF_S(SO_3F)]$ by using excess chlorylfluorosulfate resulted in the formation of complex reaction mixtures.

Very little can be said at this point regarding a detailed mechanism for reaction (3); however, the conversion of a SO_3F compound into a Sb_2F_{11} salt may be extended to other fluorosulfates. Work in this direction is at present under way.

It is interesting to note that even though the reaction of chloryllluoride, FCIO₂, and SbF₅ has been extensively studied in the past $2a, b, 6, 17$, only ClO₂SbF₆ and (very recently) $ClO₂Sb₃F₁₆⁶$ have been reported.

There appears to be no definite precedent for the ion $[AsF₅(SO₃F)]$. The chloronium compound shows limited thermal stability and decomposition occurs with gradual loss of AsF_5 . It is interesting in this context that our attempts to obtain an analogous $[BF_3(SO_3F)]$ ⁻ compound resulted in an incomplete uptake of BF₃ by ClO₂SO₃F at temperatures between 0 °C and 5 °C. All BF₃ could be readily removed *in vacua.* This result was not unexpected when the low thermal stability of $CIO_2BF_4^{2a}$, $b^{4,6}$ is taken into consideration.

In all cases $AsF₅$ appeared to be a most suitable anion for abstracting the $SO₃F⁻$ ion without subsequent side-reactions and this reaction should be capable of extension to other suitable SO_3F^- donors.

Financial support by the Defence Research Board of Canada is gratefully acknowledged.

REFERENCES

- **1 A. A. WOOLF,** *Adv. Inorg. Chem. Radiochem., 9 (1966) 211.*
- *2* **(a) M. SCHMEISSER AND F. L. EBENHKCH,** *Angew. Chem., 66 (1954) 230.* **(b) A. A. WOOLF, J. Chem. Sot., (1954) 4113.**
- **3 H. A. CARTER, A. M. QURESHI AND F. AUBKE,** *Chem. Common., (1968) 1461.*
- *4* **K. 0. CHRISTE, C. J. SCHACK, D. PILLIPOVICH AND W. SAWODNY, Inorg.** *Chem., 8* **(1969) 2489.**
- **5 H. A. CARTER, W. M. JOHNSON AND F. AUBKE,** *Can. J. Chem., 47 (1969) 4619;* **H. A. CARTER AND F. AUBKE,** *ibid., 48 (1970) 3456.*
- *6* **A. I. KARELIN, 2. K. NIKITINA, Yu. YA. KHARITONOV AND V. YA. ROSOLOVSKII,** *RUSS. J. Znorg. Chem., 15 (1970) 480.*
- *7* **P. A. YEATS, J. R. SAMS AND F. AUBKE, Znorg.** *Chem., I2 (1973) 328.*
- *8* **(a) R. C. THOMPSON, J. BARR, R. J. GILLESPIE, J. B. MILNE AND R. A. ROTHENBURY, Zfrorg. Chem., 4 (1965) 1641.**

(b) R. J. GILLESPIE, K. OUCHI AND G. P. PEZ, Inorg. *Chem., 8 (1969) 63.*

- 9 G. BRAUER (Ed.), *Handbook of Preparative Inorganic Chemistry*, Academic Press, New York, **2nd ed., 1963, p. 301.**
- 10 G. H. CADY AND J. M. SHREEVE, *Inorg. Synth.*, $7(1963)$ 124.
- **11 R. J. GILLESPIE AND R. A. ROTHENBURY,** *Can. J.* **Chem., 42 (1964) 416.**
- **12 H. A. CARTER, A. M. QURESHI, J. R. SAMS AND F. AUBKE,** *Can. J. Chem.,* **48 (1970) 2853.**
- **13 H. A. CARTER, S. P. L. JONES AND F. AUBKE,** *Znorg. Chem.,* **9 (1970) 2485.**
- **14 G. M. BEGUN, W. H. FLETCHER AND D. F. SMITH, J.** *Chem. Phys., 42 (1965) 2236.*
- *15* **J. WEIDLEIN AND K. DEHNICKE, Z.** *Anorg. Allg. Chem., 348 (1966) 278.*
- *16* **F. 0. SLADKY, P. A. BULLINER AND N. BARTLETT, J.** *Chem. Sac. (A), (1969) 2179.*
- *17* **M. SCHMEISSER AND W. FINK,** *Angew. Chem., 69 (1957) 780.*